Bồi dưỡng học sinh giỏi môn Toán Lớp 6 - Chuyên đề: Bài toán đếm số. Tìm số tự nhiên (chữ số) dựa vào cấu tạo số (Có đáp án)

doc 15 trang Duy Nhất 09/06/2025 281
Bạn đang xem tài liệu "Bồi dưỡng học sinh giỏi môn Toán Lớp 6 - Chuyên đề: Bài toán đếm số. Tìm số tự nhiên (chữ số) dựa vào cấu tạo số (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docboi_duong_hoc_sinh_gioi_mon_toan_lop_6_chuyen_de_bai_toan_de.doc

Nội dung text: Bồi dưỡng học sinh giỏi môn Toán Lớp 6 - Chuyên đề: Bài toán đếm số. Tìm số tự nhiên (chữ số) dựa vào cấu tạo số (Có đáp án)

  1. CHUYÊN ĐỀ BÀI TOÁN ĐẾM SỐ. TÌM SỐ TỰ NHIÊN (CHỮ SỐ) DỰA VÀO CẤU TẠO SỐ. Bài 1: Có bao nhiêu số tự nhiên chia hết cho 4 gồm bốn chữ số, chữ số tận cùng bằng 2 ? HD Các số phải đếm có dạng abc2 Chữ số a có 9 cách chọn Với mỗi cách chọn a , chữ số b có 10 cách chọn. Với mỗi cách chọn a,b chữ số c có 5 cách chọn (1,3,5,7,9) để tạo với chữ số 2 tận cùng làm thành số chia hết cho 4 . Tất cả có: 9.10.5 = 450 số. Bài 2: Có bao nhiêu số tự nhiên có ba chữ số trong đó có đúng một chữ số 5 ? HD Chia ra 3 loại số: - Số đếm có dạng: 5ab : chữ số a có 9 cách chọn, chữ số b có 9 cách chọn các số thuộc loại này có: 9.9 = 81 số. - Số điểm có dạng a5b : chữ số a có 8 cách chọn, chữ số b có 9 cách chọn, các số thuộc loại này có: 8.9 = 72 số. - Số đếm có dạng ab5 : các số thuộc loại này có: 8.9 = 72 số. Vậy số tự nhiên có ba chữ số trong đó có đúng một chữ số 5 là 81+ 72+ 72 = 225 số. Bài 3: Để đánh số trang của một cuốn sách, người ta viết dãy số tự nhiên bắt đầu từ 1 và phải dùng tất cả 1998 chữ số. a) Hỏi cuốn sách có bao nhiêu trang? b) Chữ số thứ 1010 là chữ số nào? HD a) Hỏi cuốn sách có bao nhiêu trang? Ta có: Từ trang 1 đến trang 9 phải dùng 9 chữ số (viết tắt c/s). Từ trang 10 đến trang 99 phải dùng (99- 10) + 1= 90 số có 2c/s = 180c/s . Vì còn các trang gồm các số có 3 c/s. Þ Còn lại: 1998- (180+ 9) = 1809 c/s là đánh dấu các trang có 3 c/s. Þ Có: 1809 :3 = 603 số có 3 c/s. Þ Cuốn sách đó có: 603+ 99 = 702 (vì trang 1® 99 có 99 trang).
  2. Cuốn sách có 702 trang. b) Chữ số thứ 1010 là chữ số nào? Chữ số thứ 1010 là chữ số 7 của 374 . Bài 4: Trong các số tự nhiên có ba chữ số, có bao nhiêu số: a) Chứa đúng một chữ số 4 ? b) Chứa đúng hai chữ số 4 ? c) Chia hết cho 5 , có chứa chữ số 5 ? d) Chia hết cho 3 , không chứa chữ số 3 ? HD a) Chứa đúng một chữ số 4 ? Các số phải đếm có 3 dạng: 4bc có 9.9 = 81 số a4c có 8.9 = 72 số ab4 có 8.9 = 72 số Tất cả có: 81+ 72+ 72 = 225 số. b) Chứa đúng hai chữ số 4 ? Các số phải đếm gồm 3 dạng: 44c,a44,4b4 , có 26 số. c) Chia hết cho 5 , có chứa chữ số 5 ? Số có ba chữ số, chia hết cho 5 gồm 180 số, trong đó số không chứa chữ số 5 có dạng abc , a có 8 cách chọn, b có 9 cách chọn, c có 1 cách chọn (là 0 ) gồm 8.9 = 72 số. Vậy có 180- 72 = 108 số phải đếm. d) Chia hết cho 3 , không chứa chữ số 3 ? Số phải tìm có dạng abc , a có 8 cách chọn, b có 9 cách chọn, c có 3 cách chọn (nếu a + b = 3k thì c = 0;3;6;9, nếu a + b = 3k + 1 thì c = 2;5;8. Nếu a + b = 3k + 2 thì c = 1;4;7 , có 8.9.3 = 216 số. Bài 5: Có bao nhiêu số tự nhiên có 4 chữ số chia hết cho 3 và có tận cùng bằng 5? HD Số lớn nhất có 4 chữ số chia hết cho 3 và có tận cùng bằng 5 là 9975 Số nhỏ nhất có 4 chữ số chia hết cho 3 và có tận cùng bằng 5 là 1005 Ta có dãy số: 1005 ; 1035; 1065; ....; 9975 Khoảng cách của dãy là 30 => Số số tự nhiên có 4 chữ số chia hết cho 3 và có tận cùng bằng 5 là:
  3. (9975 – 1005) : 30 + 1 = 300 số Bài 6: Viết dãy số tự nhiên từ 1 đến 999 ta được một số tự nhiên A . a) Số A có bao nhiêu chữ số? b) Tính tổng các chữ số của số A ? c) Chữ số 1 được viết bao nhiêu lần? d) Chữ số 0 được viết bao nhiêu lần? HD a) Số A có bao nhiêu chữ số? Từ 1 đến 9 có 9 số gồm: 1.9 = 9 chữ số Từ 10 đến 99 số có 90 số gồm: 90.2 = 180 chữ số Từ 100 đến 999 có 900 số gồm: 900.3 = 2700 chữ số Số A có: 9+ 180+ 2700 = 2889 chữ số. b) Tính tổng các chữ số của số A ? Giả sử ta viết số B là các số tự nhiên từ 000 đến 999 (mỗi số đều viết bởi 3 chữ số), thế thì tổng các chữ số của B cũng bằng tổng các chữ số của A.B có: 3.1000 = 3000 chữ số, mỗi chữ số từ 0 đến 9 đều có mặt 3000 :100 = 300 (lần) Tổng các chữ số của B (cũng là của A ): (0+ 1+ 2+ ...+ 9).300 = 45.300 = 13500 c) Chữ số 1 được viết bao nhiêu lần? Cần đếm số chữ số 1 trong 1 dãy: 1,2,3,...,999 (1) Ta xét dãy: 000,001,002,...,999 (2) Số chữ số 1 trong hai dãy như nhau. Ở đây dãy (2) có 1000 số, mỗi số gồm 3 chữ số, số lượng mỗi chữ số từ 0 đến 9 đều như nhau. Mỗi chữ số (từ 0 đến 9 ) đều có mặt 3.1000 :10 = 300 (lần). Vậy ở đây (1) chữ số 1 cũng được viết 300 lần. d) Chữ số 0 được viết bao nhiêu lần? Ở dãy (2) chữ số 0 có mặt 300 lần. So với dãy (1) thì ở dãy (2) ta viết thêm các chữ số 0 : - Vào hàng trăm 100 lần (chữ số hàng trăm của các số từ 000 đến 099 ); - Vào hàng chục 10 lần (chữ số hàng chục của các số từ 000 đến 009 ); - Vào hàng đơn vị 1 lần (chữ số hàng đơn vị của 000 ).
  4. Vậy chữ số 0 ở dãy (1) được viết là: 300- 111= 189 (lần). Bài 7: Từ các chữ số 1,2,3,4 , lập tất cả các số tự nhiên mà mỗi chữ số trên đều có mặt đúng một lần. tính tổng các số ấy. HD Ta lập được 4.3.2.1= 24 số tự nhiên bao gồm cả bốn chữ số 1,2,3,4 . Mỗi chữ số có mặt 6 lần ở mỗi hàng. Tổng của 24 số nói trên bằng: 60+ 600+ 6000+ 60000 = 66660 . Bài 8: Tìm số tự nhiên có năm chữ số, biết rằng nếu viết thêm chữ số 2 vào đằng sau số đó thì được số lớn gấp ba lần số có được bằng cách viết thêm chữ số 2 vào đằng trước số đó. HD Gọi số cần tìm là: abcde ( a khác 0 ) Theo bài ra ta có: abcde2 = 3.2abcde Þ 10.abcde + 2 = 3.200000+ 3.abcde Þ 7.abcde = 599998 Þ abcde = 85714 Thử lại: 857142 = 3.285714 Vậy số cần tìm là 857142 . Bài 9: Tìm số tự nhiên có tận cùng bằng 3 , biết rằng nếu xóa chữ số hàng đơn vị thì số đó giảm đi 1992 đơn vị. HD Vì rằng nếu xóa chữ số hàng đơn vị thì số đó giảm đi 1992 đơn vị nên số tự nhiên cần tìm có 4 chữ số. Gọi số tự nhiên cần tìm là abc3,(a ¹ 0) Theo bài ra ta có: abc3- 1992 = abc Þ 10.abc + 3- 1992 = abc Þ 9.abc = 1989 Þ abc = 221 Vậy số cần tìm là 2213. Bài 10: Tìm ba chữ số khác nhau và khác 0 , biết rằng nếu dùng cả ba chữ số này lập thành các số tự nhiên có ba chữ số thì hai số lớn nhất có tổng bằng 1444. HD
  5. Gọi ba chữ số cần tìm là a,b,c (a > b > c > 0) . Theo bài ra ta có: abc + acb = 1444 100a + 10b + c + 100a + 10c + b = 1444 200a + 11b + 11c = 1444 200a + 11(b + c) = 1400+ 11.4 a = 7;b = 3;c = 1. Vậy 3 số cần tìm là: 1;3;7 . Bài 11: Hiệu của hai số là 4 . Nếu tăng một số gấp ba lần, giữ nguyên số kia thì hiệu của chúng bằng 60 . Tìm hai số đó. HD Gọi 2 số đó là a,b (a > b) Theo bài ra ta có: a- b = 4 Þ b = a- 4 (1) Nếu tăng một số gấp ba lần, giữ nguyên số kia thì hiệu của chúng bằng 60 Þ 3a- b = 60 (2) Thay (1) vào (2) ta có: 3a- (a- 4) = 60 Þ 3a- a + 4 = 60 Þ 2a = 56 Þ a = 28 Þ b = 24 Þ Vậy số cần tìm là 28;24 . Bài 12: Tìm hai số, biết rằng tổng của chúng gấp 5 lần hiệu của chúng, tích của chúng gấp 24 lần hiệu của chúng. HD Theo đầu bài. Nếu biểu thị hiệu là 1 phần thì tổng là 5 phần và tích là 24 phần. Số lớn là: (5+ 1) : 2 = 3 (phần). Số bé là: 5- 3 = 2 (phần) Vậy tích sẽ bằng 12 lần số bé. Ta có: Tích = Số lớn x Số bé Tích = 12 x Số bé
  6. Số lớn là 12. Số bé là: 12 :3x 2 = 8 Bài 13: Tích của hai số là 6210 . Nếu giảm một thừa số đi 7 đơn vị thì tích mới là 5265 . Tìm các thừa số của tích. HD Gọi thừa số được giảm là a , thừa số còn lại là b . Theo đề bài ta có: a.b = 6210 (a- 7).b = 5265 Þ a.b- 7.b = 5265 Þ 6210- 7.b = 5265 Þ 7.b = 6210- 5265 Þ 7.b = 945 Þ b = 945: 7 = 135 Þ a = 6210 :135 = 46 Vậy hai thừa số cần tìm là 46;135 . Bài 14: Một học sinh nhân một số với 463. Vì bạn đó viết các chữ số tận cùng của các tích riêng ở cùng một cột nên tích bằng 30524 . Tìm số bị nhân? HD Do đặt sai vị trí các tích riêng nên bạn học sinh đó chỉ nhân số bị nhân với 4+ 6+ 3 . Vậy số bị nhân bằng: 30524 :13 = 2348. Bài 15: Tìm thương của một phép chia, biết rằng nếu thêm 15 vào số bị chia và thêm 5 vào số chia thì thương và số dư không đổi? HD Gọi số bị chia, số chia, thương và số dư lần lượt là a,b,c,d . Ta có: a :b = c (dư d ) Þ a = c.b + d (a + 15) : (b + 5) = c (dư d ) Þ a + 15 = c.(b + 5) + d Þ a + 15 = c.b + c.5+ d Mà a = c.b + d nên: a + 15 = c.b + c.5+ d = c.b + d + 15 = c.b + c.5+ d
  7. Þ 15 = c.5 Þ c = 3. Bài 16: Khi chia một số tự nhiên gồm ba chữ số như nhau cho một số tự nhiên gồm ba chữ số khác nhau, ta được thương là 2 và còn dư. Nếu xóa một chữ số ở số bị chia và xóa một chữ số ở số chia thì thương của phép chia vẫn bằng 2 nhưng số dư giảm hơn trước là 100. Tìm số bị chia và số chia lúc đầu. HD Gọi số bị chia lúc đầu là aaa , số chia lúc đầu là bbb số dư lúc đầu là r . Ta có: aaa = 2.bbb + r (1) aa = 2.bb + r - 100 (2) Từ (1) và (2) Þ aaa- aa = 2.(bbb- bb) + 100 Þ a00 = 2.b00+ 100 Þ a = 2b + 1 Ta có: b 1 2 3 4 a 3 5 7 9 Thử từng trường hợp ta được 3 đáp số: 555 và 222 ; 777 và 333 ; 999 và 444 . Bài 17. Một số có 3 chữ số, tận cùng bằng chữ số 7. Nếu chuyển chữ số 7 đó lên đầu thì ta được một số mới mà khi chia cho số cũ thì được thương là 2 dư 21. Tìm số đó HD Gọi ab7 số tự nhiên có chữ số 7 là hàng đơn vị. 7ab số tự nhiên có chữ số 7 là số hàng trăm. Theo đề bài ta có: 7ab : ab7 = 2 dư 21 Hay: 7ab = 2.ab7+ 21 Ta có: ab = 10a + b;abc = 100a + 10b + c => 700+ ab = 2(10ab + 7) + 21 => 700+ ab = 20ab + 14+ 21 => 700- 14- 21= 20ab- ab => 665 = 19ab => ab = 35. Vậy số tự nhiên có ba chữ số đó là: 357 .
  8. Cách 2: Gọi số phải tìm là ab7 , theo đề bài ta có: 7ab = 2.ab7 + 21 => 2.ab7 + 21= 7ab => 2(100a + 10b + 7) = 700+ 10a + b => 200a + 20b + 28 = 700+ 10ab => 190a + 19b = 665 => 10a + b = 35 Bài 18. Tìm số tự nhiên có 5 chữ số, biết rằng nếu viết thêm chữ số 7 vào đằng trước số đó thì được một số lớn gấp 4 lần so với số có được bằng cách viết thêm chữ số 7 vào sau số đó HD Gọi số tiền có năm chữ số là: abcde Theo đề bài: 7abcde = 4.abcde7 Ta có: 7abcde = 700000+ abcde;4.abcde7 = 4.(10.abcde + 7) Þ 7abcde = 4.abcde7 Þ 700000+ abcde = 4.(10.abcde + 7) Þ 700000+ abcde = 40.abcde + 28 Þ 700000- 28 = 40.abcde- abcde Þ 6999972 = 39.abcde Bài 19. Tìm số tự nhiên có hai chữ số, biết rằng nếu viết thêm một chữ số 2 vào bên phải và một chữ số 2 vào bên trái của nó thì số ấy tăng gấp 36 lần HD Gọi số phải tìm là ab . Viết thêm một chữ số 2 vào bên trái và bên phải ta được: 2ab2 , số đo tăng lên gấp 36 lần. => 2ab2 = 36.ab => 2000 + 10 ab + 2 = 36 ab => 26 ab = 2002 => ab = 77 Bài 20. Nếu ta viết thêm chữ số 0 vào giữa các chữ số của một số có hai chữ số ta được một số mới có 3 chữ số lớn hơn số đầu tiên 7 lần . Tìm số đó HD Số tự nhiên có hai chữ số có dạng: ab
  9. Thêm chữ số 0 vào giữa hai chữ số: a0b Theo đề bài: a0b = 7.ab Hay 100a + b = 7.(10a + b) => 30a = 6b => 5a = b • Khi a = 1, ta được: b = 5 (nhận) ab là: 15 • Khi a = 2 , ta được: b = 10 (loại) Đáp số: 15. Bài 21. Nếu xen vào giữa các chữ số của một số có hai chữ số của chính số đó, ta được một số mới có bốn chữ số và bằng 99 lần số đầu tiên. Tìm số đó Hướng dẫn Gọi số tự nhiên cần tìm là ab (a,b Î N;a > 0) Theo bài ra, ta có: aabb = 99.ab Û 1100a + 11b = 990a + 99b Û 110a- 88b = 0 Û 5a- 4b = 0 Û 5a = 4b a 4 Û = b 5 Mà a;b là các số có 1 chữ số Þ a = 4,b = 5. Bài 22. Nếu xen vào giữa các chữ số của một số có hai chữ số một số có hai chữ số kém số đó 1 đơn vị thì sẽ được một số có bốn chữ số lớn gấp 91 lần so với số đầu tiên. Hãy tìm số đó HD Gọi số cần tìm là ab ( a khác 0 ), ( ab11) Đặt cd = ab- 1 Theo bài ra ta có: abcd = 91ab => 1000a + b + 10(ab- 1) = 91ab => 1100a + 11b- 10 = 910a + 91b => 190a- 80b- 10 = 0 => 19a- 8b- 1= 0 1+ 8b => a = 19
  10. Thử b từ 0 đến 9 ta được a = 3,b = 7 thoả mãn. Bài 23. Tìm số tự nhiên có hai chữ số, biết rằng số mới viết theo thứ tự ngược lại nhân với số phải tìm thì được 3154; số nhỏ trong hai số thì lớn hơn tổng các chữ số của nó là 27 HD Giả sử ab < ba , theo bài Số có dạng 3b Theo bài 3b.b3 = 3154 « (30+ b)(10b + 3) = 3154 ; b là số tự nhiên: 0 < b < 10 Thế b = 1 không phù hợp. Thế b = ... Thế b = 8 phù hợp Vậy số cần tìm là: 38 và 83 . Bài 24. Cho số có hai chữ số . Nếu lấy số đó chia cho hiệu của chữ số hàng chục và hàng đơn vị của nó thì được thương là 18 và dư 4 . Tìm số đã cho HD Số tự nhiên có 2 chữ số là ab (0 b;a,b Î N) . Ta có ab : (a- b) được thương là 18 dư 4 . Þ ab = 18(a- b) + 4 Þ 10a + b = 18a- 18b + 4 Þ 8a- 19b + 4 = 0 Þ 8a + 4 = 19b 8a và 4 là hai số chẵn Þ b chẵn. Chỉ có b = 4;a = 9 Þ ab = 94 . Bài 25. Cho hai số có 4 chữ số và 2 chữ số mà tổng của hai số đó bằng 2750. Nếu cả hai số được viết theo thứ tự ngược lại thì tổng của hai số này bằng 8888 . Tìm hai số đã cho HD Gọi số cần tìm là abcd và xy Ta có: abcd + xy = 2750 (1) dcba + yx = 888 (2) Cả 2 phép cộng đều không nhớ sang hàng nghìn nên từ (1) ta có a = 2 , (2) d = 8 . Cùng từ (1) ta có d + y có tận cùng = 0 , mà d = 8 nên y = 2 Từ (2) ta có a + x có tận cùng = 8 mà a = 2 nên x = 6 Từ (1) ta có x + c + 1 có tận cùng là 5 mà x = 6 nên c = 8 Từ (2) ta có b + y có tận cùng = 8 mà y = 2 nên b = 6 .