Bồi dưỡng học sinh giỏi môn Toán Lớp 6 - Chuyên đề: Đồng dư thức (Có đáp án)

doc 16 trang Duy Nhất 09/06/2025 441
Bạn đang xem tài liệu "Bồi dưỡng học sinh giỏi môn Toán Lớp 6 - Chuyên đề: Đồng dư thức (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docboi_duong_hoc_sinh_gioi_mon_toan_lop_6_chuyen_de_dong_du_thu.doc

Nội dung text: Bồi dưỡng học sinh giỏi môn Toán Lớp 6 - Chuyên đề: Đồng dư thức (Có đáp án)

  1. CHUYÊN ĐỀ ĐỒNG DƯ THỨC A. KIẾN THỨC CẦN NHỚ. I/ Định nghĩa : * Cho a, b là các số nguyên và m là số nguyên dương. Ta nói a đồng dư với b theo modun n và ký hiệu là a ≡ b có cùng số dư khi chia cho n. + Như vậy a ≡ b (mod n) (a – b) chia hết cho n. Ví dụ : 3 ≡ - 1 (mod 4) ; 5 ≡ 17 (mod 6) ; 18 ≡ 0 (mod 6) + Nhận xét: Nếu a chia b dư r thì a ≡ r (mod b). * Điều kiện a ≡ 0 (mod m) có nghĩa là bội của a  m (a | m) hay m là ước của a ( m \ a) . * Nếu a - b không chia hết cho m, ta viết a ≡ b (mod m) II/ Các tính chất cơ bản: 1) Với mọi số nguyên a, ta có a ≡ a (mod m) 2) a ≡ b (mod m) => b ≡ a (mod m) 3) a ≡ b (mod m) và b ≡ c (mod m) => a ≡ c (mod m) 4) a ≡ b (mod m) và c ≡ d (mod m) => a + c ≡ b + d (mod m) Hệ quả: a1 ≡ b1 (mod m) , a2 ≡ b2 (mod m) , ... , an ≡ bn (mod m) => a1 + a2 + a3 + ... + an ≡ b1 + b2 + b3 + ... + bn(mod m) 5) a ≡ b (mod m) và c ≡ d (mod m) => a.c ≡ b.d (mod m) Hệ quả : a) a1 ≡ b1 (mod m) , a2 ≡ b2 (mod m) , ... , an ≡ bn (mod m) => a1.a2.a3. ... .an ≡ b1.b2.b3. ... .bn(mod m) Nhận xét: +) a ≡ 1 (mod 2) và b ≡ 1 (mod 2) => a + b ≡ 2 (mod 2) Mà 2 ≡ 0 (mod 2) => a + b ≡ 0 (mod 2) +) a ≡ 1 (mod 2) và b ≡ 1 (mod 2) => a.b ≡ 1(mod 2) Điều này có nghĩa : Tổng của hai số lẻ là một số chẵn, tích của hai số lẻ là một số lẻ. b) a ≡ b (mod m) => an ≡ bn (mod m) - với mọi n N Ví dụ: a ≡ 3 (mod 7) => a2 ≡ 9 (mod 7) ≡ 2 (mod 2) Điều này có nghĩa : Nếu một số chia 7 dư 3 thì bình phương số đó chia 7 dư 2. Chú ý: a) Không được chia hai vế của một đồng dư thức . 1
  2. Ví dụ : 2 ≡ 12 (mod 10) nhưng 1 ≡ 6 (mod 10). b) a ≡ 0 (mod m) và b ≡ 0 (mod m), nhưng a.b có thể đồng dư với 0 theo module m. Ví dụ : 2 ≡ 0 (mod 10) và 5 ≡ 0 (mod 10), nhưng 2.5 = 10 ≡ 10 (mod 10). 6) Nếu a ≡ b (mod m) và d là ước chung của a, b sao cho (d, m) = 1 a b => a : d ≡ b : d (mod m) ( ≡ (mod m) ) d d 7) Nếu a ≡ b (mod m) và d là số nguyên là ước chung của ba số a, b, m a b m => ≡ (mod ) d d d 8) Nếu a ≡ r (mod m) với 0 ≤ r < m , thì r chính là số dư trong phép chia a cho m. B/ CÁC DẠNG TOÁN DẠNG 1: TÌM SỐ DƯ CỦA PHÉP CHIA Bài 1: Tìm số dư trong phép chia 20042004 cho 11 Sử dụng dấu hiệu chia hết cho 11: Một số được gọi là chia hết cho 11 khi và chỉ khi hiệu giữa các tổng chữ số ở hàng lẻ và tổng các chữ số hàng chẵn kể từ trái sang phải chia hết cho 11. Ví dụ: Xét xem số 5016 có chia hết cho 11 ? Ta có (5 + 1) - (0 + 6) = 0. Vì 0  11 = > 5016  11 HD: Ta có 2002  11 => 2004 - 2  11 => 2004 ≡ 2 (mod 11) => 20042004 ≡ 22004 (mod 11) , mà 210 ≡ 1 (mod 11) (vì 1024 - 1  11) => 20042004 = 24.22000 = 24.(210)200 ≡ 24 ≡ 5 (mod 11) Vậy 20042004 chia 11 dư 5. Bài 2: Tìm số dư khi chia A = 19442005 cho 7 HD: Ta có : 1944 ≡ -2 (mod 7) => 19442005 ≡ (-2)2005 (mod 7) Mà (-2)3 ≡ - 1 (mod 7) => (-23)668 ≡ 1668 (mod 7) hay (-23)668 ≡ 1 (mod 7) => (-23)668.(-2) ≡ - 2 (mod 7) hay (-2)2005 ≡ - 2 (mod 7) Vậy 19442005 cho 7 dư 5. Bài 3: Chứng minh rằng các số A = 61000 - 1 và B = 61001 + 1 đều là bội số của 7 HD: Ta có 6 ≡ - 1 (mod 7) => 61000 ≡ 1 (mod 7) => 61000 - 1  7 Vậy A là bội của 7 2
  3. Từ 61000 ≡ 1 (mod 7) => 61001 ≡ 6 (mod 7) , mà 6 ≡ - 1 (mod 7) => 61001 ≡ -1 (mod 7) => 61001 + 1  7 Vậy B là bội của 7 Bài 4: Tìm số dư trong phép chia 15325 - 1 cho 9 HD: Ta có 1532 ≡ 2 (mod 9) => 15325 ≡ 25 (mod 9) , mà 25 ≡ 5 (mod 9) => 15325 ≡ 5 (mod 9) => 15325 - 1 ≡ 4(mod 9) Vậy 15325 - 1 chia cho 9 dư là 4. Bài 5: Chứng minh rằng A = 7.52n + 12.6n chia hết cho 19 HD: Ta có A = A = 7.52n + 12.6n = A = 7.25n + 12.6n Vì 25 ≡ 6 (mod 19) => 25n ≡ 6n (mod 19) =>7.25n ≡ 7.6n (mod 19) => 7.25n + 12.6n ≡ 7.6n + 12.6n ≡ 19.6n ≡ 0 (mod 19) . Điều này chứng tỏ A chia hết cho 19. Bài 6: Tìm dư trong phép chia 32003 cho 13. HD: Ta có 33 ≡ 1 (mod 13) mà 2003 = 3.667 + 2 => 32003 = (33)667. 32 33 ≡ 1 => (33)667 ≡ 1667 => (33)667. 32 ≡ 1.32 (mod 13) (33)667. 32 ≡ 9 => 32003 ≡ 9 (mod 13). Vậy 32003 chia cho 13 dư 9 . Bai 7: Chứng minh rằng 22002 - 4 chia hết cho 31 HD: Ta có 25 ≡ 1 (mod 31) , mà 2002 = 5.400 + 2 Nên 22002 = (25)400 .22 Vì 25 ≡ 1 (mod 31) => (25)400 ≡ 1400 (mod 31) => (25)400.22 ≡ 1.22 (mod 31) => 22002 ≡ 4 (mod 31) => 22002 - 4 chia hết cho 31 Bài 8: Chứng minh rằng : 22225555 + 55552222 chia hết cho 7 HD: Ta có 2222 + 4  7 => 2222 ≡ - 4 (mod 7) => 22225555 ≡ (- 4)5555(mod 7) 5555 - 4  7 => 5555 ≡ 4 (mod 7) => 55552222 ≡ 42222 (mod 7) => 22225555 + 55552222 ≡ (- 4)5555 + 42222 (mod 7) Mà 42222 = (-4)2222 => (- 4)5555 + 42222 = (-4)2222. 43333 + 42222 3
  4. = (-4)2222. 43333 - (- 4)2222 = (-4)2222(43333 - 1) ≡ (43) - 1(mod 7) (1) Ta lại có : 43 ≡ 1(mod 7) => 43 - 1= 63  7 => 43 - 1 ≡ 0 (mod 7) (2) Nên (- 4)5555 + 42222 ≡ 0 (mod 7) Từ (1) và (2) => 22225555 + 55552222 chia hết cho 7. Bài 9: Tìm dư trong phép chia 570 + 750 cho 12 HD: Ta có 52 ≡ 1(mod 12) => (52)35 ≡ 1 (mod 12) hay 570 ≡ 1(mod 12) (1) 72 ≡ 2 (mod 12) => (72)25 ≡ 1(mod 12) hay 750 ≡ 1(mod 12) (2) Từ (1) và (2) => 570 + 750 chia cho 12 dư 2. Bài 10: Tìm số dư của A = 776776 + 777777 + 778778 khi chia cho 3 và khi chia cho 5? HD: +Ta có 776 ≡ - 1(mod 3) => 776776 ≡ -1(mod 3) => 776776 ≡ 1 (mod 3) 777 ≡ 0 (mod 3) => 777777 ≡ 0 (mod 3) 778 ≡ 1 (mod 3) => 778778≡ 1 (mod 3) => 776776 + 777777 + 778778 khi chia cho 3 dư 2. +Ta có 776 ≡ 1 (mod 5) => 776776 ≡ 1 (mod 5) 777 ≡ - 3 (mod 5) => 777777 ≡ - 3777 (mod 5) 778 ≡ 3 (mod 5) => 778778 ≡ 3778 (mod 5) => 776776 + 777777 + 778778 ≡ 1 - 3777 + 3778 (mod 5) Hay 776776 + 777777 + 778778 ≡ 1 + 3.3777 - 3777 (mod 5) 776776 + 777777 + 778778 ≡ 1 + 3777(3 - 1) (mod 5) 776776 + 777777 + 778778 ≡ 1 + 2.3777 Mà 32 ≡ - 1(mod 3) => (32)388.3 ≡ 3 (mod 5) Vậy A = 776776 + 777777 + 778778 ≡ 1 + 2.3 ≡ 2 (mod 5) Vậy A chia cho 5 dư 2. Bài 11: Tìm số dư của A = 32005 + 42005 khi chia cho 11 và khi chia cho 13? HD: + Ta có : 35 ≡ 1 (mod 11) => (35)401 ≡ 1 (mod 11) Và 45 ≡ 1 (mod 11) => (45)401 ≡ 1 (mod 11) => A = 32005 + 42005 ≡ 2 (mod 11) => A chia cho 11 dư 2 +Ta có : 33 ≡ 1 (mod 13) => (33)668. 3 ≡ 1.3 (mod 13) => 32005 ≡ 3 (mod 13) 4
  5. Và 43 ≡ -1 (mod 13) =>(43)668 .4≡ 1.4 (mod 13) => 42005 ≡ 4 (mod 13) => A = 32005 + 42005 ≡ 7 (mod 13) => A chia cho 13 dư 7 . Bài 12: (Định lý nhỏ Fermat ) Giả sử p là số nguyên tố bất kỳ, khi đó với mọi số tự nhiên n ta có np - n chia hết cho p. HD: Ta có np - n = n(np - 1 - 1) Nếu n chia hết cho p => định lý được chứng minh. Nếu n không chia hết cho p thì (n, p) = 1, nên np - 1 ≡ 1 (mod p) =>(np - 1 - 1) chia hết cho p. Bài 13: Bạn Thắng học sinh lớp 6A đã viết một số có hai chữ số mà tổng các chữ số của nó là 14. Bạn Thắng đem số đó chia cho 8 thì được số dư là 4, nhưng khi chia cho 12 thì được số dư là 3. a) Chứng minh rằng bạn Thắng đã làm sai ít nhất một phép tính chia. b) Nếu phép chia thứ nhất cho 8 là đúng thì phép chia thứ hai cho 12 có ó dư là bao nhiêu ? Hãy Tìm số bị chia. HD: a) Gọi số đó là n = ab Vì n chia cho 8 dư 4, nên n = 8p + 4 Và n chia cho 12 dư 3, nên n = 12q + 3 => 8p + 4 = 12q + 3 (Mà 8p + 4 là số chẵn, còn 12q + 3 là số lẻ). Do vậy bạn Thắng đã làm sai một phép chia. b) Vì a + b = 14 => ab ≡ 2 (mod 3) => 4ab ≡ 8 (mod 12) (1) Nếu ab ≡ 0 (mod 4) => 3ab ≡ 0 (mod 12) (2) Từ (1) và (2) => ab ≡ 8 (mod 12) => n chia cho 12 dư 8 Do n = 8p + 4 là số chẵn mà n = ab => b {0; 2; 4; 6; 8} Nếu b = 0 => a = 14 (loại - vì a là số có một chữ số khác 0) b = 2 => a = 12 (loại) b = 4 => a = 10 (loại) b = 6 => a = 8 b = 8 => a = 6 => Số cần tìm là 86 hoặc 68 => Số bị chia là 68. DẠNG 2 : VẬN DỤNG TÌM CHỮ SỐ TẬN CÙNG CỦA MỘT SỐ 5
  6. I/ Tìm một chữ số tận cùng của an : - Nếu a có chữ số tận cùng là 0; 1; 5 hoặc 6 thì a n lần lượt có chữ số tận cùng lần lượt là 0; 1; 5 hoặc 6. - Nếu a có chữ số tận cùng là 2, 3 hoặc 7, ta vận dụng nhận xét sau với k Z 24k ≡ 6 (mod 10) 34k ≡ 1 (mod 10) 74k ≡ 1 (mod 10) => Để tìm chữ số tận cùng của an với a có chữ số tận cùng là 2; 3; 7 ta lấy n chia cho 4. Giả sử n = 4k + r với r {0; 1; 2; 3} Nếu a ≡ 2 (mod 10) thì an ≡ 2n = 24k + r ≡ 6.2r (mod 10) Nếu a ≡ 3 (mod 10) hoặc a ≡ 7 (mod 10) thì an ≡ a4k + r ≡ ar (mod 10) Bài 1: Tìm chữ số cuối cùng của các số : a) 62009 b) 92008 c) 32009 d) 22009 HD: a) 62009 có chữ số tận cùng là 6 (vì 6 khi nâng lên luỹ thừa với số mũ tự nhiên khác 0 vẫn bằng chính số 6) b) 92008 = (92)1004 = 811004 = 1 có chữ số tận cùng là 1 91991 = 91990.9 = (92)995.9 = 81995.9 = ( 1).9 = 9 có chữ số tận cùng là 9 Nhận xét : Số có chữ số tận cùng là 9 khi nâng lên luỹ thừa với số mũ tự nhiên chẵn khác 0 nào thì chữ số tận cùng là 1, khi nâng lên luỹ thừa với số mũ tự nhiên lẻ thì có số tận cùng là 9. c) 32009 = (34)502.3 = 81502.3 = ( 1).3 = 3 có chữ số tận cùng là 3. d) 22009 = 22008.2 = (24)502.2 = 16502.2 = ( 6).2 = 2 có chữ số tận cùng là 2 Bài 2: Tìm chữ số tận cùng của các số sau : a) 421 b) 3103 c) 84n + 1 (n N) d) 1423 + 2323 + 7023 HD: a) 430 = 42.15 = (42)15 = 1615 = 6 có chữ số tận cùng là 6 421 = 420 + 1 = (42)10.4 = 1610.4 = ( 6).4 = 4 có chữ số tận cùng là 4 Nhận xét : Số nào có số tận cùng là 4 thì khi nâng lên luỹ thừa với số mũ tự nhiên chẵn thì có số tận cùng là 6, khi nâng lên với số mũ tự nhiên lẻ có số tận cùng là 4) b) 3103 = 3102.3 = (32)51.3 = 951.3 = ( 9).3 = 7 có chữ số tận cùng là 7 6
  7. c) 84n + 1 = 84n.8 = (23)4n.8 = 212n.8 = (24)3n.8 = 163n.8 = ( 6).8 = . 8 có chữ số tận cùng là 8 d) 1423 = 1422.14 = ( 6).14 = . 4 2323 = 2322.23 = (232)11.23 = ( 9).23 = 7 7023 = 0 Vậy : 1423 + 2323 + 7023 = 4 + 7 + 0 = 1 có chữ số tận cùng là 1 II/ Tìm hai số tận cùng của số an : Ta có nhận xét sau : 220 ≡ 76 (mod 100) 320 ≡ 01 (mod 100) 65 ≡ 76 (mod 100) 74 ≡ 01 (mod 100) Mà 76n ≡ 76 (mod 100) với n ≥ 1 5n ≡ 25 (mod 100) với n ≥ 2 Suy ra kết quả sau với k là số tự nhiên khác 0. a20k ≡ 00 (mod 100) nếu a ≡ 0 (mod 10) a20k ≡ 01 (mod 100) nếu a ≡ 1; 3; 7; 9 (mod 10) a20k ≡ 25 (mod 100) nếu a ≡ 5 (mod 10) a20k ≡ 76 (mod 100 nếu a ≡ 2; 4; 6; 8 (mod 10) Vậy để tìm hai chữ số tận cùng của an, ta lấy số mũ n chia cho 20 Bài 1: Tìm hai chữ số tân cùng của 22003 HD: Ta có : 220 ≡ 76 (mod 100) => 220k ≡ 76 (mod 100) Do đó : 22003 = 23.(220)100 = 8.(220)100 = ( 76).8 = 08 Vậy 22003 có hai chữ số tận cùng là 08. Bài 2: Tìm hai chữ số tận cùng của: a) 2999 b) 3999 HD: a) Ta thấy 2999 21000 : 2 (1) 100 Mà 21000 = 210 100 100 Ta có: 210 1024  1 mod 25 210  1 mod 25 7
  8. 21000 1 mod 25 Hay 21000 chia cho 25 dư 1 => Hai chữ số tận cùng của 21000 có thể là 01; 26; 51; 75, nhưng 21000 là bội của 4 nên hai chữ số tận cùng của nó phải là 76 (2) Từ (1) và (2) ta thấy số 76 chia 2 thì hai chữ số tận cùng là 38 (= 76:2) hoặc 88(=186:2) nhưng cũng do 2999 cũng là bội của 4 nên hai chữ số tận cùng của 2999 là 88. b) 3999 31000 :3 Ta có: 34 = 81  19 mod100 38 192  61 mod100 310  61.9  49 mod100 3100  4910  01 mod100 1000 3  01 mod100 , nghĩa là hai chữ số tận cùng của 31000 là 01. Số 31000 là bội của 3 nên chữ số hang trăm của nó khi chia cho 3 phải dư 2 ( Chia tiếp thì số 201 chia hết cho 3, nếu số dư là 0 hay 1 thì số 001, 101 không chia hết cho 3) Vậy 3999 31000 :3 có hai chữ số tận cùng là 76 (= 201 : 2) 8
  9. Chuyên đề ĐỒNG DƯ THỨC A.Tóm tắt các kiến thức cơ bản : I/Định nghĩa : Cho m là số nguyên dương. Hai số nguyên a và b được gọi đồng với nhau theo module m, nếu a - b chia hết cho m ( a - b )| m hay m\(a - b) Ký hiệu : a ≡ b (mod m) được gọi là một đồng dư thức. Ví dụ : 3 ≡ - 1 (mod 4) 5 ≡ 17 (mod 6) 18 ≡ 0 (mod 6) Điều kiện a ≡ 0 (mod m) có nghĩa là a là bội của m, k/h: a  m (a | m) hay m là ước của a ( m \ a) . Nếu a - b không chia hết cho m, ta viết a ≡ b (mod m) II/ Các tính chất cơ bản : 1) Với mọi số nguyên a, ta có a ≡ a (mod m) 2) a ≡ b (mod m) => b ≡ a (mod m) 3) a ≡ b (mod m) và b ≡ c (mod m) => a ≡ c (mod4) a ≡ b (mod m) và c ≡ d (mod m) => a + c ≡ b + d (mod m) Hệ quả : a1 ≡ b1 (mod m) , a2 ≡ b2 (mod m) , ... , an ≡ bn (mod m) => a1 + a2 + a3 + ... + an ≡ b1 + b2 + b3 + ... + bn(mod m) 5) a ≡ b (mod m) và c ≡ d (mod m) => a.c ≡ b.d (mod m) Hệ quả : a) a1 ≡ b1 (mod m) , a2 ≡ b2 (mod m) , ... , an ≡ bn (mod m) => a1.a2.a3. ... .an ≡ b1.b2.b3. ... .bn(mod m) b) a ≡ b (mod m) => an ≡ bn (mod m) - với mọi n N +Nhận xét : a) * a ≡ 1 (mod 2) và b ≡ 1 (mod 2) => a + b ≡ 2 (mod 2) Mà 2 ≡ 0 (mod 2) => a + b ≡ 0 (mod 2) * a ≡ 1 (mod 2) và b ≡ 1 (mod 2) => a.b ≡ 1(mod 2) Điều này có nghĩa : Tổng của hai số lẻ là một số chẵn, tích của hai số lẻ là một số lẻ. b)a ≡ 3 (mod 7) => a2 ≡ 9 (mod 7) ≡ 2 (mod 2) Điều này có nghĩa : Nếu một số chia 7 dư 3 thì bình phương số đó chia 7 dư 2.Chú ý : a)Không được chia hai vế của một đồng dư thức . Ví dụ : * 2 ≡ 12 (mod 10) nhưng 1 ≡ 6 (mod 10). b) a ≡ 0 (mod m) và b ≡ 0 (mod m), nhưng a.b có thể đồng dư với 0 theo module m. Ví dụ : 2 ≡ 0 (mod 10) và 5 ≡ 0 (mod 10), nhưng 2.5 = 10 ≡ 10 (mod 10). Như vậy để phép chia hai vế của đồng thức đòi hỏi phải kèm theo một số điều kiện . 6) Nếu a ≡ b (mod m) và d là ước chung của a, b sao cho (d, m) = 1 a b thì : a : d ≡ b : d (mod m) ( ≡ (mod m) ) d d 7)Nếu a ≡ b (mod m) và d là số nguyên là ước chung của ba số a, b, m 9
  10. a b m thì ≡ (mod ) d d d B/Áp dụng : Dạng 1 : Tìm số dư của phép chia Bài 1 : Tìm số dư trong phép chia 20042004 cho 11 Sử dụng dấu hiệu chia hết cho 11 : Một số được gọi là chia hết cho 11 khi và chỉ khi hiệu giữa các tổng chữ số ở hàng lẻ và tổng các chữ số hàng chẵn kể từ trái sang phải chia hết cho 11. Ví dụ : Xét xem số 5016 có chia hết cho 11 ? Ta có (5 + 1) - (0 + 6) = 0. Vì 0  11 = > 5016  11 Giải : Ta có 2002  11 => 2004 - 2  11 => 2004 ≡ 2 (mod 11) => 20042004 ≡ 22004 (mod 11) , mà 210 ≡ 1 (mod 11) (vì 1024 - 1  11) => 20042004 = 24.22000 = 24.(210)200 ≡ 24 ≡ 5 (mod 11) Vậy 20042004 chia 11 dư 5. Bài 2 : Tìm số dư khi chia A = 19442005 cho 7 Giải : Ta có : 1944 ≡ -2 (mod 7) => 19442005 ≡ (-2)2005 (mod 7) Mà (-2)3 ≡ - 1 (mod 7) => (-23)668 ≡ 1668 (mod 7) hay (-23)668 ≡ 1 (mod 7) => (-23)668.(-2) ≡ - 2 (mod 7) hay (-2)2005 ≡ - 2 (mod 7) Vậy 19442005 cho 7 dư 5. 100 Bài 3: Tìm số dư khi chia 3 cho 7 Giải 16 Ta có: 3100 34.396 34. 36 4 4 Ta thấy: 3 81 7.11 4 3  4 mod 7 (1) 36 729 7.104 1 36 1 mod 7 16 16 (2) 36 16 mod 7 36 1 mod 7 4 6 16 100 Từ (1) và (2) 3 . 3  4.1 mod 7 3  4 mod 7 100 Vậy 3 chia cho 7 dư 4. 32 * Cách 2: 3100 34.396 34. 33 4 + 3 81  4 mod 7 (1) 3 + 33 27  6 mod 7 mà 6  1 mod 7 3  1 mod 7 32 32 32 Do đó, 33  1 mod 7 33 1 mod 7 (2) 32 Từ (1) và (2) 34. 32  4.1 mod 7 3100  4 mod 7 100 Vậy 3 chia cho 7 dư 4. 10